If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+26=0.
a = 2; b = 16; c = +26;
Δ = b2-4ac
Δ = 162-4·2·26
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{3}}{2*2}=\frac{-16-4\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{3}}{2*2}=\frac{-16+4\sqrt{3}}{4} $
| -10=3n/4-16 | | 3x+15x=126 | | (1/2)y-(1/8)=(7/8) | | −3(23x+6)=−2−3(23x+6)=−266 | | 108−3x−x2=0 | | 9x-4+8x+10+18x-2=140 | | 5(x+3=5 | | c=7(-5) | | 2n+9=3n-21 | | 9c-4=50 | | 9(u-11)-14=-32 | | 1.085x=x+5000 | | x+.15x+.08x=80 | | 12(2w-9)=-38 | | 6x+4+5=11x+4 | | 3x-24+2x+(180-(4x+11))=180 | | (2x-24)=(x+5)° | | -11=-5x+9 | | 2x+24+x+5=90 | | 50-2f=24 | | 3(3+7a)=-96 | | 2x+24+x+5=180 | | 4x-(3x-7)=-28 | | 43x-15=157 | | 6x=7x+19 | | 2r=-7+3r | | -19/8x-7/4x=-99/20 | | 4f=2f−8 | | -19/8-7/4x=-99/20 | | 2(x+5)+8(x+7)=6x+9 | | |x-4|-10=12 | | 4+2j=6.6 |